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ABSTRACT

Zonally averaged meteorological fields can have large variances in polar regions due to purely geometrical
effects, because fewer statistically independent areas contribute to zonal means near the poles than near
the equator. A model of a stochastic field with homogeneous statistics on the sphere is presented as an
idealized example of the phenomenon. We suggest a quantitative method for isolating the geometrical effect
and use it in examining the variance of the zonally averaged 500 mb geopotential height field.

1. Introduction

Many investigators in recent years have reported
climatological data in terms of zonal average statis-
tics. This is in part due to the resulting compaction
of the data sets, the smooth variation of most zonally
averaged variables with latitude, and the importance
of the zonally symmetric aspects of the atmosphere
to an understanding of its general circulation. Ex-
amples of such compilations are those of NOAA
Environmental Research Laboratories in the United
States and those of the Soviet groups at Dubninsk
and at the Main Geophysical Observatory in Len-
ingrad.

From zonal averages it is a natural step to the
examination of the variability of zonally averaged
quantities as one measure of the dynamical activity
of the atmosphere at different latitudes. For example,
Vinnikov (1977), Yamamoto and Hoshiai (1979)
and Weare (1979) report variances of zonally av-
eraged temperature. Oort (1977) and Trenberth
(1979) report variances of zonally averaged geo-
potential height for the Northern and Southern
Hemispheres, respectively. In all cases the variance
increases toward the poles.

Our purpose here is to point out that increase of
the variance of a zonally averaged quantity with lat-
itude can often be explained by geometrical consid-
erations based solely on the spherical geometry of
the earth. An increase in the variance of zonal means
need not imply greater dynamical variability.

In the next section it will be shown that the vari-
ance of a zonally averaged stochastic field variable
rises toward the poles with an approximate 1/
cos(latitude) dependence when the field has statistics
that are homogeneous on the sphere. The interpre-
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tation of the result is very simple, involving the stan-
dard error associated with finite area spatial aver-
ages—shorter latitude belts having a larger “sampling
error” in estimating the true zonal mean. The result
is a spatial analogue of Leith’s (1973) work on finite
length time averages leading to a kind of ‘““climatic
noise.” In the final section we illustrate the geomet-
rical effect with data for zonal averages of the 500
mb geopotential height. An appropriate rescaling of

"the data reveals the extent to which the geometrical

effect contributes to the rise with latitude in the vari-
ance of the zonally averaged data. A similar rescaling
can be applied to other data sets when examining the
variance of zonal averages in order to learn what
fraction of the change in variance with latitude is
due to spherical geometry and what may be genu-
inely dynamical in origin.

2. A homogeneous noise model

We describe here a model to illustrate the effect
of spherical geometry on zonal averages. Points on
a sphere are labeled by the radial unit vector £. We
construct a real, stochastic field F(f) on the sphere.
The field is expanded in complex? spherical harmon-
ics as

o H
F®) =2 2 fm¥7(), (1)
where the spherical harmonics are defined as Y 7(f)
= N,.P'(sinf)e™®, and P! are associated Le-
gendre polynomials, 8 is latitude, ¢ is longitude, and
the N,,, = N,_,, are real constants chosen so that the

2 Since the field F(f) is real, the use of complex spherical har-
monics is not strictly necessary, but does permit considerable sim-
plification of the algebra needed to obtain the results below.
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F1G. 1. Spectrum of spherical harmonic components of a random
field with spatial correlation function the same as the correlation
function of the 500 mb geopotential height field given in Eq. (7).
A smooth curve has been drawn through the points.

spherical harmonics are normalized, i.e.,
f dQlyri? = 1.

In particular, N,y = [(2] + 1)/4x]"/% See, for ex-
ample, Morse and Feshbach (1953) for a thorough
discussion of the spherical harmonics. The f,, are
 random complex variables, constrained by the real-
ness of F(f) to satisfy f,, = f .., where asterisks
denote complex conjugation.

We show in Appendix A that if the f,,, are drawn
from a distribution with ensemble statistics (f;.)

= 0 and
<f ;.;nf I'm’> = 0’12511'5mm' (2)

(angular brackets denote ensemble averages), then
the (second order) statistics of F(f) are homogeneous
on the sphere; in particular,

(F()) = 0,
(F(R)F()) = o*p(f-7),

(3)
(4)

where
o*=(4r)"' 2 (21 + o
=0

and the correlation p of the field at one point with
the field at another point depends only on the great
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circle distance between the two points. The reverse
is also true: Eqgs. (1) and (2) follow from Egs. (3)
and (4).’ The quantity o,* is the spectrum of the field
F(%) in the spherical harmonic representation, and
is expressed in terms of the covariance of the field
in Eq. (A8) of Appendix A. The variance of F(f),

F(f-)2> = ¢?, is the same at each point on the sphere.
Through Egs. (1) and (2) we thus have a means of
generating a stochastic field with statistics every-
where the same on the sphere.

While no true meteorological field is statistically
homogeneous over the globe, a homogeneous model
serves as a useful starting point in investigating the
statistics of a field. The approximation of local ho-
mogeneity and isotropy of statistics is often conven-
ient and is used in many practical applications, such
as obtaining the geopotential height field from ra-
diosonde data using optimum interpolation methods
(Gandin et al., 1972; Schlatter et al., 1976; Bergman
and Bonner, 1976; Julian and Thiébaux, 1975).

We now consider the zonally averaged field

1 J‘180°
dé F(6, ¢),
360° J-1s0° ¢ F(6, ¢)
denoted by square brackets. It is shown in Appendix
A that the variance of [F(#)] may be expressed in
terms of the spectrum o/ as

[F(0)] = (5)

(AFO)P = ? o212 + 1)/4x)[P(D)], (6)

where x = sinf and P, are Legendre polynomials.
Note that each term in Eq. (6) is positive and the
maximum of each [P(x)]? I > 0, is at the poles, x
= +1. Hence no matter what the variance ¢,% in each
mode of the model, the variance of zonal averages
will be maximum at the poles.

As a specific example consider a stochastic field
with the spectrum shown in Fig. 1. We have esti-
mated this spectrum using Eq. (A8) of Appendix A
with the spatial autocorrelation function taken from
Julian and Thiébaux (1975):

Ri(s) = [aJo(ws) + Ble7™, (7)

where a = 0.99, 8 = 0.01, w = 1.4, A = 0.215, and
Jo is the zero-order Bessel function. R,(s) represents
a reasonable fit to the spatial autocorrelation func-
tion of the 500 mb geopotential height field over the
United States for separation s in units of 1000 km
in the zonal direction. We therefore create a sto-

3 This is equivalent to the statement that the Y (#) are empirical
orthogonal functions (EOF’s) for any stochastic field with ho-
mogeneous statistics on the sphere (Obukhov, 1947), if the concept
of EOF’s is extended to include continuous as well as discretely
gridded data. A thorough discussion of this may be found in North
et al. (1982). An application to simple stochastic climate models
appears in North and Cahalan (1981).
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chastic field with the same statistics in all directions
over the entire sphere as the height field has in the
zonal direction over the United States. Correlation
beyond 1500 km was not included in Eq. (A8) in
calculating the spectrum.

The solid curve in Fig. 2 shows a plot of ([F(6)]*)
obtained using (6) for the spectrum in Fig. 1. Note
the strong peak in the polar region. It must be kept
in mind, of course, that (7) is not valid at all latitudes,
and so this result should not be considered a global
theory of the zonally averaged 500 mb height field,
but only as an idealized example of the geometrical
effect we are describing.

The variance peaks at the poles lend themselves
to a very simple interpretation suggested by elemen-
tary standard error theory. Suppose the decorrelation
distance for the stochastic field F(f) is L [i.e., p(L)
=~ 1/e] so that, roughly speaking, the distance be-
tween independent samples is 2L. For a latitude belt
of circumference C (=2wR; cosf), the number of
independent samples added in forming the zonal av-
erage [F(8)]is N = C/2L (N large). In forming the
zonal average [F(6)] of a single realization we are
estimating the mean (F(6)). The variance of such
an estimate is ¢°/N. Hence we would expect

2L 1
27« Rg cosf '

([FOP) =~ o (8)

A more rigorous derivation of Eq. (8) is given in
Appendix B. It is shown there that the approximation
(8) is valid for large N when the correlation of the
field at one point with the field at another point de-
creases smoothly with separation, i.e., without large
oscillations.

The dashed line in Fig. 2 shows ([F(6)]*) multi-
plied by cosf. As predicted by Eq. (8), it is virtually
constant. From Eq. (8) we see that the constant value
of the dashed curve is just 2L /27 R, [since o> = R,(0)
= 1], which is just the fraction of the circumference
of the earth occupied by one independent sample
length (about 2000 km in our example).

The argument leading to Eq. (8) suggests that the
solid curve in Fig. 2 may be viewed (since o2 = 1)
as a plot of 1/N, the reciprocal of the number of
independent samples contributing to the zonal av-
erage at each latitude. We see from Fig. 2 that north
of about 80° the number of independent samples is
fewer than three, and the dashed curve is beginning
to deviate significantly from a constant value. This
suggests that our sampling argument for Eq. (8) is
reasonably trustworthy for N = 3 or L <€ C/6. In
Appendix B we show that Eq. (8) describes the vari-
ance of zonal averages of any field with homogeneous
statistics as long as the spatial correlation function
of the field does not oscillate over long distances and
correlation does not extend around a large fraction
of the latitude circle (i.e., L < C). Consequently our
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F1G. 2. The solid curve shows the variance of the zonal mean
of the random field F computed from Eq. (6) using the spectrum
plotted in Fig. 1. The dashed curve shows the solid curve multiplied
by cosé.

criterion V = 3 is probably useful for a wide class
of fields with statistics like those just described.

Sometimes data are averaged over a finite width
latitude band before being examined for fluctuations.
To see what effect averaging over latitude bands has
in the model, Eq. (5) can easily be averaged over
some interval of # before the sum (6) is formed. The
peaking at the poles is reduced by such a procedure,
but not removed unless the band widths increase with
latitude so as to contain equal numbers of indepen-
dent samples.

3. Example using real data

As a further illustration of the geometrical en-
hancement of the variance of zonal averages we have
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FiG. 3. The solid curve shows the variance of the zonally av-
eraged 500 mb height field computed from daily (1200 GMT)
NMC analyses for 15 successive Januaries (1963-77). The dashed
curve shows the variances of the 500 mb height at each grid point,
averaged around a latitude circle.

examined the daily (1200 GMT) National Meteo-
rological Center (NMC) analyses of the January 500
mb geopotential height for 15 years (1963-77) made
available by the National Center for Atmospheric
Research (NCAR) tape library. The results are
shown in Fig. 3.

The solid curve depicts [255(6)]?, the variance of
the zonally averaged geopotential height (primes
indicate deviation from the mean, overbars time
averages), whereas the dashed curve shows
[(Z500(8, ¢))°], that is, the local variance at each grid
point averaged around the latitude circle (¢ = lon-
gitude). The two curves agree at the pole, as they
must. The rapid rise in the grid-point variance
[(z’soo)z] up to about 60°N suggests that much of the
rise in the variance of the zonal mean below 60°N
is dynamical in origin. However, above 60°N the
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grid-point variance changes very little, and the factor
of 10 rise in the variance of the zonal mean appears
to be due largely to the geometrical effect discussed
here.

To justify this conclusion more quantitatively, we
first attempt to factor out the portion of the rise in
the variance attributable to a rise in the level of dy-
namical activity with latitude by dividing the vari-
ance of the zonal mean by the zonally averaged grid-
point variance at each latitude, i.e., forming the ratio
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FIG. 4. The solid curve shows the ratio of the variance of zonally
averaged geopotential height to the zonally averaged grid-point
variance given in Fig. 3. The dashed curve results from multiplying
the solid curve by cosf. As discussed in the text, the dashed curve
may be interpreted, below 75°N, as the correlation length typical
of each latitude, in units of the earth’s circumference.
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[2500(0) 2 /[(z500(8, ¢))*]. This ratio is plotted as the
solid curve in Fig. 4. Then, as the results for the
stochastic model studied in the previous section sug-
gest, we multiply the ratio by cosf to eliminate the
geometrical sampling effect. This is plotted as the
dashed curve in Fig. 4. Since the cosine-weighted
curve rises only slightly from 60°N to the pole,
whereas the solid curve rises by a factor of 10, we
conclude that most of the rise in variance of the zonal
averages above 60°N is indeed due to the spherical
geometry of the earth.

Earlier we were able to interpret the dashed, co-
sine-weighted curve as the fraction of the earth’s
circumference occupied by twice the correlation
length L [see Eq. (8)]. The more detailed analysis
of the variance of zonal averages given in Appendix
B shows that this interpretation remains approxi-
mately valid even in the presence of inhomogeneity
of the statistics, if the length 2L is interpreted as a
local-variance-weighted, zonally averaged correla-
tion length. This is important, since the grid-point
variances vary by a factor of 3 around a latitude belt
at 60°N (see, e.g., Blackmon, 1976). For this reason
we are still able to interpret the dashed curve in Fig.
4 below 75°N as representing a zonal correlation
length (in units of the earth’s circumference) typical
of that latitude. The length 2L is defined more pre-
cisely in Eqgs. (B16) and (B18) of Appendix B as an
integral length scale of the spatial correlation func-
tion.

The dip near 50°N in the dashed curve in Fig. 4
is probably more due to the strong negative corre-
lations occurring near that latitude, which reduce the
integral length scale, than to a decrease in the dis-
tances over which significant correlations extend.
The rapid rise in the dashed curve toward the equator
reflects the dramatic increase in zonal correlation
lengths near the equator which is suggested, for ex-
ample, by the work of Ghil et al. (1979).

4.  Concluding remarks

We have shown that zonally averaged quantities
can have large variances near the poles for purely
geometrical reasons. This geometrical effect explains
much of the rise in the variance of the zonally av-
eraged 500 mb height field near the North Pole.
Other meteorological fields such as wind fields may
show this geometrical effect less clearly because of
the strong spatial inhomogeneity in their statistics.

We have also shown that the ratio of the variance
of zonal averages to the zonally averaged grid-point
variance, f = ([F(0)1*)/[{F(6, $)*)], weighted by
the cosine of the latitude, may be interpreted as a
zonal correlation length typical of that latitude, for
latitudes where the ratio f is smaller than % (and
assuming the spatial correlation function of the field
does not oscillate strongly). A plot of this quantity,
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f cosf, can reveal gross changes with latitude in the
spatial correlations and may therefore be of more
dynamical interest than a plot of the variance of
zonal averages.

Many modeling studies indicate an increased sen-
sitivity near the poles to changes in atmospheric CO,
(Manabe and Wetherald, 1975, 1980) or to other
external forcings (e.g., Salmun et al., 1980). The
“signal” of climatic change may be larger near the
poles but so is the *“noise” due both to the geometrical
effect studied here and to genuine dynamical vari-
ability. The best latitude for detecting climatic
change is not where the signal is largest but where
the signal-to-noise ratio is largest. Wigley and Jones
(1981) suggest, in fact, that this ratio is largest in
mid-latitudes.
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APPENDIX A

Stochastic Field with Homogeneous Statistics
on a Sphere

Given the expansion of the stochastic field in Eq.
(1), and Eq. (2) for the statistics of the coefficients
of the expansion, we shall show here that Egs. (3)
and (4) follow.

Eq. (3) follows immediately from the assumption
that the ensemble mean of f,, vanishes, i.e., (fim)
= 0. To prove Eq. (4), we construct the covariance
of the field F(f):

(FRF(P)) = :2 r% SmfeyY TRYF®), (Al)

I
Ms
M~

a’Y ()Y T™(F), (A2)

-~
1

0 m=-1

using Eq. (2) and f¥, = f;—... The addition theorem
of spherical harmonics can be written as (see, for
example, Morse and Feshbach, 1953)

2 YPMR)Y ™(#) = (2 + 1)P(¢-¥) /47, (A3)
m=—] )

where P, is the Legendre polynomial of order / and
f - is the cosine of the angle between the two unit
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vectors. Using this theorem in Eq. (A2) gives
(FRF#)) = 2 (21 + 1)o/P(}-P)/4m. (A4)
=0

We see from Eq. (A4) that the covariance is a func-
tion only of the great circle distance between the two
points f and . The variance ¢* = (F?) at any point
f = ¥ on the sphere is obtained from (A4) using the
normalization convention for the Legendre polyno-
mials P(1) = 1, so that

o= 2 (21 + 1)a?/4x. (A5)

1=0 N

Eq. (4) follows directly from Egs. (A4), (AS5),
and the definition of the correlation function p
= (F(})F(¥))/{F?*). From Egs. (4) and (A4) we
obtain the explicit expression

Ms

p(B-#¥) = 22 (21 + 1)oP(}-7)/4na® (A6)

!

0

for the correlation function.

Given a correlation function p(z), z = £-F, for a
stochastic field as a function of great circle separation
s = Rg cos™'z between points on the surface of a
sphere of radius Rz, we may obtain the “spectrum”
o/ for the field by inverting Eq. (A6) using the or-
thogonality property of the Legendre polynomials

f_l dz P(z2)P{z) = {2/(21 + D)6y . (AT)

Multiplying Eq. (A6) on both sides by a Legendre
polynomial, integrating over z, and using (A7), we
obtain

1

o = 27o? f p(z)P(z)dz (A8)
-1

for the spherical harmonic spectrum.

To derive Eq. (6) for the variance of the zonally
averaged field [F] defined in Eq. (5), we use the fact
that the zonal average of any spherical harmonic
Y7 with m # 0 vanishes, since [¢"*] = 0. The zonal
average of Eq. (1) for the stochastic field F is there-
fore

[F(8)] = gfm[(zz +1)/4x]72P(x), (A9)

where x = sinf, and we have used Y7 = [(2/ + 1)/
47]'/?P(x). Squaring both sides of Eq. (A9) and
ensemble averaging to obtain the variance of the
zonally averaged field gives

({F@O)) = 2 é (frofroy

X [(21 + 1)1 + 1)'/2/4x]P(x)P/(x). (A10)

Eq. (6) follows from this and Eq. (2).
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APPENDIX B
Variance of Zonal Averages

We derive an expression for the variance of zonal
averages that does not require the assumption of
homogeneous statistics on the sphere. The approach
is similar to Leith’s (1973) treatment of time aver-
ages, and permits a more rigorous definition of what
is meant by the correlation length L introduced in
Eq. (8) of the paper.

We fix our attention on one latitude and define the
zonal average of a field F as in Eq. (5). We suppress
the latitude variable # in much of what follows. The
variance of the zonal mean of F is obtained by squar-
ing Eq. (5) and averaging over the ensemble, i.e.,

([FI?) = (360°)72
X J‘130° aé f_l'so,, d¢'(F(¢)F(¢)). (Bl)

If we define the covariance of F as
c(@; \) = (F(¢)F(¢ + 7)),
—180° < A < 180°, (B2)

so that A is the longitudinal separation of the two
points, and define the correlation p as

p(d; N) = c(&; N)/[c(¢; 0)e(4 + X; 0)]'/%, (B3)
we may write Eq. (B1) using these definitions as

180°

(LFT) = (360°) f de

—180°

X [ anle(@; 0)els + % 0)120(4: X). (B4)

We now define the dimensionless correlation “length”

1(¢)
180°
= (360°)"" d\

-180°

(¢ + \; 0)1/2
o(¢; 0)'/2

The interpretation of f(¢) depends on the degree of
longitudinal inhomogeneity in the statistics of F. In
many cases of geophysical interest the ratio c(¢
+ X; 0)!/2/c(¢; 0)'/% varies little from 1 over the lon-
gitudinal separations A for which the correlation p
is significant. We can therefore approximate (B5) by

p(¢; ). (BS)

180°
f@) =~ Geoy" [ anpgn.  (86)

The approximation (B6) is exact for a field with sta-
tistics that are homogeneous in longitude (i.e., cylin-
drically symmetric). (The model described in Section
2 was homogeneous in both longitude and latitude.)
To the extent that (B6) is a good approximation and
p does not oscillate strongly with A\, f(¢) serves as
a measure of the fraction of a latitude circle over
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which the field F is significantly correlated with itself
at longitude ¢.

Using the definition (BS5) to rewrite Eq. (B4), we
obtain

PPy = 60y |
- [ef,

180°

. do o(¢; 0)f(¢), (BT)

(B8)

where
[c] = [c(¢; 0)] (B9)

and
180°
f=1e1 @60 [ do (9 0)f(e). (BIO)

The quantity [¢] is the variance of the field at each
point averaged around a latitude circle; f is the av-
erage around the latitude circle of the correlation
“length” f(¢) weighted by the local variance ¢(¢; 0).
Note that the solid curves in Figs. 2 and 4 are plots
of f versus latitude. The fraction f in Eq. (B8) de-
termines how much lower the variance of the zonally
averaged field is than the point variance of the field.
We may therefore consider 1/f as the number N of
independent samples, or effectively uncorrelated seg-
ments, entering into a zonal average at a given lat-
itude. Whether or not this is a useful interpretation
depends on how homogeneous the statistics of the
field are with longitude. Since the use of zonal av-
eraging, to be interesting, presupposes a certain ap-
proximation to zonal homogeneity in the statistics
of the field, the interpretation suggested above is
probably a useful one in all cases where zonal av-
eraging is a plausible format in which to describe the
field.

Suppose that approximation (B6) may be used for
f(#). We change variables from A to x, with

x = C\/360°,
C = 27 Rg cosd,

(B11)
(B12)

so that x measures distance along a latitude circle
from longitude ¢ and C is the circumference of the
latitude circle. Eq. (B6) then becomes

C/2
@ =c | X p(6:360° x/C) (B13)

or
f(#) = 2L(¢)/(27Rg cosb),

with the definition

(B14)

c/2

2L(¢) = f " dx p(¢; 360° x/C). (BI15)

If we make the assumption that correlations beyond
a certain distance d < C may be neglected, then the
integral in Eq. (B15) is adequately approximated by
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20(p) ~ f_dd dx p(¢; 360° x/C). (B16)

Eq. (B16) allows us to identify L(¢) as a correlation
length.

Having defined the quantities f and L(¢) above,
we are ready to give a more rigorous justification of
Eq. (8). Substituting Eq. (B14) for f(¢) in Eq. (B10)
for f, we obtain

f = 2L/(2wRg cosb), (B17)
with
180°

L= 660" [ do oo L. (B19)

The length L is the average of L(¢) around the lat-
itude circle, weighted by the local variance c(¢; 0).
To justify Eq. (8), we return to the assumption of
homogeneous statistics of F on the sphere. For lat-
itudes where the approximation (B16) is valid, where
L(¢) may be evaluated by integrating over a small
fraction of a latitude circle, the integral in (B16) will
be nearly independent of latitude since p depends
only on great circle separation and integration
around a small portion of a latitude circle may be
adequately approximated by integration along a
nearby great circle path. Combining (B16) and
(B18), we obtain an expression for L valid every-
where except near the poles [where (B16) is invalid
because correlation extends completely around lati-
tude circles]:

d
L~ J; ds plcos(s/Rg)). (B19)

Here p(z) is the spatial correlation function of F
given in Eq. (4) and s measures distance along a
great circle. By substituting Eq. (B17) for f into Eq.
(B8) for the variance of [F], we obtain Eq. (8):
{[FP?) = [c]2L /(2w Rg cosh). (B20)
Note that Eq. (B20) is still valid under the much
weaker assumption that the statistics of F be ap-
proximately homogeneous in longitude only. For ex-
ample, the variance [¢] may differ significantly from
one latitude to another, as it does for the 500 mb
height field discussed in Section 3. By forming the
ratio

([FJ?) cosf/[c] = 2L/(27Rg), (B21)
which produced the dashed curves of Figs. 2 and 4,
one obtains L, a measure of the correlation length
(B16) zonally averaged according to Eq. (B18). This
too may differ from one latitude to another. A con-
stant value of the ratio over a band of latitudes is
an indication of relatively homogeneous zonal cor-
relation lengths in those latitudes.
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